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Abstract—A set of analytic formulae are presented for the effective thermal conductivity of either a square

or a hexagonal array of parallel tubes which have distinct core, tube and fill conductivities, The formulae

are based on a generalization of Rayleigh’s [ Phil. Mag. 34(5), 481-502 (1892)] method to include hexagonal

(as well as square) arrays, tubes (as well as solid rods), and higher-order terms in the analytic series. The

accuracy of the analytic formulae is determined by comparison with essentially exact numerical calculations.
The formulae are applied to the problem of an array of dry, spent, nuclear fuel rods.

INTRODUCTION

THE PURPOSE of this paper is to present and numeri-
cally validate a set of analytic formulae for the effec-
tive thermal conductivity, k.g, of either a square or
hexagonal array of tubes, see Figs. 1 and 2, respec-
tively. Each tube consists of a core and tube wall with
conductivities k., and k... When the core and wall
are the same material, then the tube is a solid rod,
k,.q- The region between the tubes is filled with a
third material, kg;,. The arrays are assumed infinite so
boundaries are not considered. The effective con-
ductivity of interest is perpendicular to the array of
tubes which appear as circles in a two-dimensional
sketch. The effective conductivity is the conductivity
value for which a homogeneous medium will exhibit
the same heat transfer characteristics (i.e. the same
heat flux for equal temperature gradients).

The set of analytic formulae extend and improve the
range of available analytical solutions for the effective
conductivity of a regular array of tubes. It is con-
sidered theoretically important to have this type of
analytical solution for such a well defined class of
problems. For example, the equations offer analytic
solutions which can be used to benchmark computer
codes (although properly implemented numerical
solutions can be more accurate than the analytic for-
mulae, especially as the accuracy of the numerical
technique is increased). The analytic formulae also
have the significant advantage of being easy to use
because they do not require a computer program.

A motivation for this work stems from the need to
calculate the k4 for a dry spent nuclear fuel assembly
which consists of fuel rods in a regular pattern (either
square or hexagonal array). During transportation
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and dry storage, the fuel assemblies are placed in an
air-tight container which has an essentially stagnant
fill gas. The fuel rods consist of a center core (fuel)
and a tube wall (clad) as illustrated in either Fig. 1 or
2. Spent fuel rods have a fuel-to-clad gap thermal
resistance which is discussed later in this paper.
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(a) (b)

FiG. 1. Square array of tubes with computational domains
used to calculate the conduction factor, F,,., in the
(a) horizontal and (b) 45 degree direction.
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! rod (or tube) volume fraction

S maximum volume fraction
(rods touching)

F...« conduction factor, kg/kyy

HX  hexagonal array

keore  core conductivity (for tube only)

NOMENCLATURE
a, b, d, D, v coeflicients in formulae k effective conductivity
(no names) ke fill conductivity

k.o  rod conductivity (for solid rod only)
kowe tube wall conductivity (for tube only)
ry outer tube radius

¥ inner tube (outer core) radius :
S0  square array |
{ tube wall thickness, r,—#;. !

BACKGROUND LITERATURE

The problem of heat conduction perpendicular to
an array of tubes has many mathematical analogies
to phenomena in materials [1-3], optics [4-7], biology
[8], electrical conductivity [9-11], vibration [9] and
mathematics [12-15]. A complete presentation of the
mathematical analogies is beyond the scope of this
paper, hence this paper concentrates on the effective
thermal conductivity.

There have been many articles published on the
effective conductivity of a regular array of tubes or
solid rods. Only the most important background
articles will be discussed in this work. The basic
method for solid rods is outlined by Rayleigh [9];
extended to tubes having the same core material
as the fill material by Runge [10]; generalized by
Keller’s reciprocal theorem (11, 12]; extended to
tubes having a core material different from the fill

|
SN O

I
(a (b

A
L

=2

Y &

* 7

FiG. 2. Hexagonal array of tubes with computational
domains used to calculate the conduction factor, F,.4, in the
(a) horizontal and (b) 30 degree direction.

material by Israelachvili e a/l. {4, 5] and by Ninham
and Sammut [8]; and extended to hexagonal arrays
by Perrins et af. {7]. This paper combines and extends
the earlier results, with emphasis on tubes (as well as
solid rods), within hexagonal (as well as squarc)
arrays, and increases the number of terms retained
in the analytic series.

Lord Rayleigh [9] published a seminal article where
he considered the electrical conductivity, refractive
index and relative density of a composite medium
consisting of either solid rods in a square array or
solid spheres in a cubic array. Rayleigh’s original
theoretical approach continues to be useful and has
not been outdated or replaced (although alternative
methods have been developed for tightly-packed,
highly-conductive cylinders [15]). Because of its length
and mathematical complexity, Rayleigh’s method is
summarized in Appendix A, as it has been used to
derive the expanded set of analytic formulae presented
in this paper.

Runge [10] was the first to extend Rayleigh's
method to the problem of tubes where the core of the
tube was filled with the same material as the fill med-
ium (koo;. = kg)- Although Runge states that the new
formulae are valid only for thin tubes, we found the
equations to be accurate for all tube wall thicknesses.

Keller {11, 12] presented the reciprocal theorem
which is applied here to state that the conduction
factor, F. .4 = (ker/ksy), for a given volume fraction,
f(=volume fraction occupied by solid rod (or core
plus tube)), and rod-to-fill conductivity ratio, Feroa/ Kt
is equal to the reciprocal of F,,, based on the same
f and reciprocal K.q/kau-

1

ko
Fcond (fa «I;’hﬁ =

”>—A N :‘k‘ﬁllw.
F sl
cond (/a kmd

In this paper, Keller’s reciprocal theorem is used to
confirm the numerical calculations.

Israelachvili et al. [4, 5] and Ninham and Sammut
[8] present formulae for arrays of tubes with three
distinct material conductivities (Kyo.e, Kigbe and kay).
Although brief, the paper by Israclachvili er af. {4]
does reveal considerable investigation to include the
effects of tubes with different core, wall and fill con-
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ductivities. It should also be noted that two typo-
graphical errors were found in the paper by Ninham
and Sammut (8]. In their equation (5), the number
0.133 should be 0.0133615 and in their equation (83),
the exponent on a” should be a®. Israelachvili is
acknowledged by Ninham and Sammut [8] as con-
tributing important comments to their paper where it
appears that Israelachvili highlighted his earlier work
to extend Rayleigh’s and Runge’s equations from
solid rods to tubes. Both groups, however, only con-
sidered a square array.

Perrins et al. [6, 7] present an extension of Ray-
leigh’s method to a hexagonal array of solid rods.
Perrins er al. [6] noted that Rayleigh omitted a term
in an equation for the square array of solid rods (in
Table 1 of this paper, the term b4, f ®v,v5 was missing
from the 4th & 5th order solution for the square
array in Rayleigh’s paper). Perrins et al. conclude that
Rayleigh used a ‘triangular truncation’ of the terms
in the analytic expansion. However, Rayleigh’s equa-
tion is actually based on a ‘linear truncation’. This
difference was not considered significant by Perrins et
al., nor is it here (although our equations do include
this term). A slight typographical error was also found
in Perrins et al.’s [6] work : in their Appendix 1, equa-
tion (Al.5) the S¢, Sis, Sy, ... sums are shown to
have negative values, however all of the S sums are
positive values. Their final equations and calculations
do agree with our work. Perrins et al. only consider
solid rods, however, and the work was not generalized
to include tubes.

ANALYSIS

The results of this work are presented in dimen-
sionless form for greater generality. The primary
quantity to be calculated is the conduction factor,
F_,.q, which is defined as:

keﬁ'
F cond kﬁ" . (2)
The term ‘effective conductivity’ is used in this work
where ‘conduction factor’ is more exact. For example,
the analytic formulae are written in terms of F,_,, and
not k.;. However, formulae for the ‘effective con-
ductivity’ are more easily understood so that term is
used freely here.

Five dimensionless parameters are used to express
the conduction factor as a function of (i) array pattern
(i.e. either square, SQ or hexagonal, HX), (ii) volume
fraction, (iii) core-to-fill conductivity ratio, (iv) tube-
to-fill conductivity ratio, and (v) inner-to-outer radius
ratio. In summary, the functionality for an array of
tubes is:

k k r;
Fcon =Fcon SQ or HX s ,ﬂ’_ﬂbj’_') 3
a d({ Q JAA Kon Ko T 3

and for an array of solid rods is :
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kl’O
Fcond = Fcond ({SQ or HX}’.f’ k d)' (4)
fill

Numerical calculations

The analytical formulae are compared with the
results of numerical calculations. The numerical cal-
culations are described by Manteufel [16] and are
summarized in Appendix B. A properly implemented
numerical method can yield results which are more
accurate than the analytic formulae because the for-
mulae are based on a truncation of an infinite series.
However, analytic formulae have advantages such as
being easier to use than a method requiring a com-
puter program. The numerical results were found to
be essentially exact (to approximately 5 digits) and
were used to check the accuracy of the analytic for-
mulae.

Analytic formulae

The analytic formulae were derived using Ray-
leigh’s method and are summarized in Table 1. For
each array, four different truncation orders are
reported, i.e. the {1st, 2nd & 3rd, 4th & 5th, 6th &
7th} orders for the square array and the {1st & 2nd,
3rd & 4th & 5th, 6th & 7th & 8th, 9th & 10th & 11th}
orders for the hexagonal array. The precise meaning
of the integer grouping for the orders can be under-
stood by following Rayleigh’s method which is dis-
cussed in Appendix A. The higher order indicates
more terms were retained in the infinite series. The
most complex equations (6th & 7th order for the SQ
array, and 9th & 10th & 11th order for the HX array)
have not been previously published.

The lowest order formulae for the SQ (1st) and
HX (Ist & 2nd) arrays yield the same result (i.e.
terms = 0 in Table 1) so that the F_,, is:

_=fy
Fcond - 1+fU| . (5)

Equation (5) is a very simple formula and is con-
sidered accurate for many applications. When the rod
conductivity (or equivalently the core and tube con-
ductivities) is near the fill conductivity, then equation
(5) is accurate. As the conductivity ratios increase,
then the error increases.

For the special case of solid rods (kcore = Kiype)s
the parameter d,ype.core = 0, 50 that the formula for o,
reduces to (from Table 1):

kﬁll - krod

—_— 6
kan+keoq ©

Oy = Ofilorod =

In this case, all of the »’s are equal (i.e. v, =0, =

vs=...). Equation (6) is consistent with the solid

rod equations published by Rayleigh [9] and Perrins
etal [6,7].

Another special case is for tubes having the

same core and fill material (k.. = kg), so that
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[ —fv,—terms

Table 1. Summary of analytic formulae for the effective conductivity of a square or hexagonal array of tubes

2f,

kcﬂ"
Fog= (K)o Iofoztems o e
o <kml> I+ /v, —terms 1 + fir, — terms

SQ = square array

Volume fraction :

Fid

I=

Ist order:
terms = Q

2nd & 3rd order:
terms = a,f ‘v vy

4th & 5th order:
terms = a, [ *v v3/(1 =by., fP0505)
+agf v,

6th & 7th order:
terms = a, f'v s/ Dy
+ay o,
+a12f‘2(l’1)1
+ay f v 030504/ D6
+a20fmu 10s(v7) 2/Do
+“:xflxl'1173(1’5)2(07)2/033

where :
Dy=1 _bIZ—I.f“:USl’"

Dy=1 _bx-l.fvxl’ﬁvs,/D()
— b f 0,

Dy, =1 *]’s.|_/‘81731’5/Df>
—1h121 0507+ braavsv] S
+ byt f703(05) 84/ Dy
+bhogy [Prvsvqty

Doy = 1 =by, fPr3v:/Dy
— 25230587+ bipavsvel S
+2[]20—1fZL)l‘}(l’5)2l'7/Dn
+[2b54.4 1'3051‘701{“" bza-z(Us)z(L’7)l]f24
— by f e ws) (7)Y Dy
'bmlfzﬁll% (ws)*(04) vy

constants:
ay = 0.305828 by, = 1.40296
ay = 0.0133615 b2y = 2.55915
a,, = 0.000184643 b5 = 0.15233

a,, = 0.242252
tyy = 0.0341942
ar = 0.0479731

by = 3.59039
by = 0.389837
byyn = 6.54926
by, = 9.18835
by = 0.997652

Ofitiube =

the dipecore = — v, and the formula for o,
reduces to (from Table 1):

R ( ("i )zn>
Ofill-tube 1— | —
rﬂ
L o
Fi
(1 - (6ﬁll-mhc)2 <r> >

which is consistent with the results of Runge [10].

Uy =

HX = hexagonal array

Volume fraction :

T
f== D
2JB)pld)
1st & 2nd order:
terms = 0

3rd, 4th & Sth order:
terms = a, f v 05

6th, 7th & 8th order:
terms = duq [ v, vs/(1 =,y [ Pvsty)
+all_flzl'.]pll

9th, 10th & 11th order:
terms = d, f°v,v5/Dy
+apn e,
+amlrm(l’1)l
g [0 05050, [ Doy
+ a3 f00104(0y) Dy
+(142./.421’1175(1"7)2(1’11)2./’1)4:

where :
A8, .
Dy =1=hy, [Py

N2
Dy = 1 —bhyy fPv09/Dy
C18,. s
— b S o5ty

Dy =1 *blzrl.f“l’sl‘",/’Do
— bty +bigav ) S
+bsyg [ es(e9) 0 /Dy
+ b [0 5050000

Dyy = L—byy frs04/Dy
—[2bygrvqt  Bratstis S
+ 2o S50 0 Dy
+ [Dag1 U3yt 834 baga(07) (0 ) £
e b4s4_f'481'5(v7)3(1’|l)l/Do

constants:
aq = 0.0754222 by = 1.06028
a;; = 0.000076500 biey = 0.73210

ars = 0.0000000517088
g = 0.00423258

v = 0.0000560053

ag = 0.0000593815

by = 0.0447964
by = 0.776234
by = 0.0327954
b3 = 0.535971
by = 0.568281

ry = (‘3ﬁu-tubc“f‘5lube-corc("i/’o)m)/(l + Bntube Srupe-core (Fi/T6) ")
) (kan— Koupe )/ (g + Koune )
Oube-core = (klubc"kcg)re)/(k\uhc+kc«\|'c)

Directional F .4

In general, the conductivity of a heterogeneous
medium can be expressed using a symmetric second-
order tensor. For a square or hexagonal array, the
second order tensor is rotationally invariant because
each is physically symmetric for either 90 (square)
or 60 (hexagonal) degree rotations. Therefore, the
effective conductivity is isotropic and can be expressed
as purely a scalar quantity (i.e. proportional to the
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FiG. 3. Conduction factor calculated for solid rods in a

square array for a range of rod-to-fill conductivity ratio,

kroalkan = {1000(a), 100(b), 10(c), 5(d), 2(e), 1(f), 1/2(g),
1/5(h), 1/10(i), 1/100(j), 1/1000(k)}.

identity tensor) (see also refs. [6, 9]). This property
was used to verify the numerical implementation by
calculating F,,, in each direction (see Figs. 1 and 2).
The results verified a correct implementation of the
numerics.

Square Array, Solid Rod, 1st Order
102 r -
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Keller’s reciprocal theorem

The accuracy of the numerical calculations was
confirmed by comparison with Keller’s reciprocal
theorem [12] (see equation (1)), and the results are
presented in Fig. 3. In Fig. 3, F,, is numer-
ically calculated for eleven values of k,4/kg for
rods in a square array. The error was defined as:
Error = 1= Feona(f, Kroalksn) Feona(fo ksulkeoa) and
was found to be between 1072 and 107 over the range
of flfrax for 1073 < k,oq/ksy < 1000. This agreement
confirms a correct implementation of the numerical
algorithms.

Calculations for solid rods

The analytic formulae and numerical calculations
for solid rods are compared in Figs. 4 and 5, for six
values of k,,q/kg. The numerical calculations of F,_ 4
are plotted as solid lines and are the same for the four
plots. The analytic formulae are plotied as dashed
lines where the order of the formulae is different for
each plot.

The numerical calculations are considered accurate
and essentially ‘exact’ to approximately 5 digits of
accuracy of F,,,. Itis noted that the analytic formulae

Square Array, Solid Rod, 2nd & 3rd Order

g h

0.8 1.0

10

A

0.2 0.4 0.6

0.0 0.2 0.0 0.8 1.0
f/ frnax f / fmax
Square Array, Solid Rod, 4th & 5th Order Square Array, Solid Rod, 6th & 7th Order
102 N T T T 0 10’ [ | — T T T
E g hij 3 F ghii i
L 102 C 102
L I e
Krog e
i 107 kil 101 Ky
k] h-] d
£ 10! q S
uw R

™7 T T7TTTTT

100
0.0

0.2

0.4 0.6
f/ fmax

0.4

0.8

04 0.6
f/ fmax

1.0

FiG. 4. Comparison of numerically calculated conduction factors (solid lines) with the analytic formulae

(dashed lines) for a square array of solid rods for different rod-to-fill conductivity ratio, &,o/kgy = {2(a),

5(b), 10(c), 20(d), 50(e), 10000(f)}. The percent error contours {0.01%(g), 0.1%(h), 1.0%(), 10.0%(j)}
are shown in the upper-left sub-plots.
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Hexagonal Array, Solid Rod, 1st & 2nd Order
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ozHexagonal Array, Solid Rod, 3rd, 4th & 5th Order

2
10 T — — T 3 r —T T T T
] h i j b L g h ij ]
- 102 t N 102 1t
i 1 I
Kroq Krod e
i - 10" Ky
2 ® 29
§10' 810’ g
' s c

100 100
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
f/ fmax t/ fma)(
Hexagonal Array, Solid Rod, 6th 7th & 8th Order Hexagonal Array, Solid Rod, Sth 10th & 11th Order
102 . 102 — — \ - 5
g hij ] ; qf
ghi 102
Krog. e
b 101 K
- b=l
5101 510
Sk i
100 10°
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
f / fmax £/ fmax

F1G. 5. Comparison of numerically calculated conduction factors (solid lines) with the analytic formulae

(dashed lines) for a hexagonal array of solid rods for different rod-to-fill conductivity ratio, k..q/km = {2(a),

5(b), 10(c), 20(d), 50(e), 10000(f)}. The percent error contours {0.01%(g), 0.1%(h), 1.0%(i). 10.0%(J);
are shown in the upper-left sub-plots.

consistently agree with the numerical calculations at
low values of f, and improve in accuracy as the order
of the formula is increased. The analytic formulae
increasingly underestimate the numerical calculations
both as f increases and as k,.4/kg increases. When
k,oq/key 18 close to unity, the analytic formulae provide
accurate predictions over the entire range of f. For
example, when k,4/ks; = 2, the numerical cal-
culations (solid lines) and analytic formulae (dashed
lines) are coincident, hence they appear as only a solid
line.

Error contours are shown as sub-plots in the upper-
left corner of Figs. 4 and 5. From these error contours,
one can identify where a given analytic formula is
within 0.01, 0.1, 1.0 and 10% of the exact solution
(where the numerical calculations are assumed to
be the exact solution). For example, one can read
from Fig. 4(a) that the 1st order analytic formula is
within 1% for isothermal rods (k,.a/ksy > 1) up to
[fmax = 0.54 (or equivalently f= 0420, because
fuax = 0.7854). Similarly, from Fig. 5(b) the 2nd &
3rd order analytic formula is within 1% for isothermal
rods up to f/fm = 0.83 (f'= 0.653). As previously
noted, isothermal rods represent the worst case for
underestimating the solution, so that for finite con-

ductivity rods or tubes, the analytic formulae are
accurate up to greater values of f.

For comparison purposes, the volume fractions at
which the error is greater than 1% are reported in
Tables 2 and 3 for each of the analytic formulac.

Table 2. Volume fractions for the analytic (formula to be
accurate within one percent (1%) for a square array of iso-
thermal (i.e. infinite conductivity) solid rods

Order Ist 2nd & 3rd 4th & Sth 6th & 7th

0.941
0.739

0.905
0.710

Sifom 0.537 0.831
f 0420 0.653

Note: fr.« = 1/4 = 0.7854 for square array.

Table 3. Volume fractions for the analytic formula to be
accurate within one percent (1%) for a hexagonal array of
isothermal (i.e. infinite conductivity) solid rods

6th, 7th  9th, 10th

3rd, 4th
Order  Ist & 2nd & 5th & 8th & lith
Snas 0.696 0.889 0.951 0.968
f 0.631 0.807 0.863 0.878

Note: [, = 1/(24/3) = 0.9069 for hexagonal array.
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As expected, the higher order formulae are accurate,
however, they are more complex (see Table 1). Also,
the percent improvement in accuracy decreases as
each additional term is added. Hence the equation
complexity greatly increases while the improvement
in accuracy only slightly improves.

It is noted that for many practical problems, k,o4/Ksu
will not be a large number and the simplest formula

{equation (5)) is accurate for a significant range of f.

Calculations for tubes with k... = kg

The accuracy of the analytic formulae was checked
for the special case of tubes whose cores contain the
fill as noted in equation (7). The calculations were
performed for both square and hexagonal arrays
for varying tube wall-thickness-to-outer-radius ratio,
t/r,. Only a small portion of the results (SQ array,
three values of t/r,) are presented in Fig. 6 as rep-
resentative of the tube calculations. In Fig. 6, the
formulae are plotted as solid lines and the numerical
calculations as circles. The analytic formulae are con-
sistently accurate and improve in accuracy as t/r,

decreases.

Calculations for spent nuclear fuel

The original motivation for this work was to cal-
culate the k.4 for a dry spent nuclear fuel assembly.
An assembly is typically described as either a square
array (for boiling water or pressurized water reactor
assemblies) or a hexagonal array (for consolidated
or liquid metal reactor assemblies). An assembly
consists of fuel rods which have a center core (UO,
fuel) and cladding (tube wall, commonly zircaloy).
During transportation and dry storage, the spent
fuel assemblies are placed in an air-tight container,
then vacuum pumped and backfilled with a non-
oxidizing gas such as helium (He) or nitrogen (N,).
The fill gas remains essentially stagnant. Numerical
calculations were performed for the nominal case
of UO, fuel (kyo,=5 W m~' °C™"), zircaloy clad
(Kjircatoy = 15 W m ™' °C™"), either nitrogen (ky, =
0.04 Wm ' °C~) or helium (kg = 02 Wm~'°C~")
fill, and in either a square or a hexagonal array. The
length ratios are representative of a PWR assembly
{(from ref. [16]; d = 0.95 cm, ¢ = 0.056 cm).

Between the UQ, fuel and the tube cladding, there
exists a gap which is filled primarily with gaseous
fission products (e.g. xenon and krypton) and helium
[17]. Hence, in the real spent fuel rod, a gap con-
ductance (i.e. thermal contact resistance) exists
between the fuel and the clad, and varies with
irradiation history. To include the effects of gap con-
ductance, we performed calculations for two cases:
(1) assuming infinite gap conductance (i.e. no contact
resistance) and (2) assuming the core and the fill gas
have the same conductivity (i.e. neglecting the higher
conductivity of the fuel). The second case is only for
illustration purposes and a lower bound on F,,,4 can
be determined by considering both k.. « kg and
Keore < ke Which is equivalent to assuming infinite
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FiG. 6. Comparison of numerically calculated conduction
factors (circles) with the 4th and 5th order analytic formulae
(solid lines) for a square array of tubes k,.q/ks = for three
tube wall thickness ratios, ¢/r, = {0.01,0.1, 0.2} for nine rod-
to-fill conductivity ratios, kyye/ka = {1(a), 2(b), 5(c), 10(d),
20(e), 50(f), 100(g), 200(h), 10000(i)}. The percent error
contours {0.01%(j), 0.1%(k), 1.0%(1), 10.0%(m)} are
shown in the upper-left sub-plots.

gap resistance. However, this lower bound in not
considered in this work. The analytic formulae and
the numerical calculations are compared in Fig. 7
where calculations were performed for (1) square and
hexagonal arrays; (2) nitrogen and helium back fill
gas; (3) assuming both infinite gap conductance and
keore = kgy. This resulted in eight analytic and eight
numerical curves for comparison. Higher order ana-
lytic formula (4th & Sth order for the SQ array, 6th,
7th & 8th order for the HX array) were found to
achieve excellent agreement with the numerical results
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Fig. 7. Comparison of numerically calculated conduction

factors (solid lines) with 4th & 5th order square array and

6th, 7th & 8th order hexagonal array analytic formulae

(dashed lines) for spent nuclear fuel rods in either nitrogen

or helium gas assuming either (a) infinite gap conductance
or (b) kegre = Ky

at the higher volume fractions (see the dashed lines in
Fig. 7).

For comparison, a typical PWR assembly has a
square array and a rod pitch-to-diameter ratio of
pld = 1.33 which results in /= 0.44. For this case the
analytic formulae are considered accurate. A con-
solidated assembly has a hexagonal array and a closer
rod spacing (0.75 < /< 0.9), so that the higher-order
analytic formulae are required for accuracy.

SUMMARY

A set of analytic formulae for the effective con-
ductivity of either a square or hexagonal array of
parallel tubes has been developed and numerically
validated. In summary:

e The formulae are based on a generalization of
Rayleigh’s [9] method to include hexagonal (as well
as square) arrays, tubes (as well as solid rods), and
higher-order terms in the analytic series, see Table 1.

e The accuracy of the formulae was computed
using essentially exact numerical calculations.

e The analytic formulae increasingly underestimate
F,..q for increasing volume fraction and increasing
rod-to-fill conductivity ratio, sec Figs. 4 and 5.

® The accuracy of the formulae for the case of
infinitely conducting (isothermal) solid rods was cal-
culated and tabulated, see Tables 2 and 3.

o The analytic formulae were noted to be accurate
for tubes (ke = key) as well as solid rods, see Fig. 6.

o For the case of dry, spent, nuclear fuel rods, the
4th & 5th order formula for the square array and the
6th, 7th & 8th order formula for the hexagonal array
are considered accurate, see Fig. 7.
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APPENDIX A: ANALYTICAL FORMULAE

The basic method is outlined by Rayleigh [9] and has
been discussed by Perrins ez al. {6, 7], among others. This
discussion is presented to (i) provide new insights into the
derivation, hence complement previous discussions, and (ii)
give the interested reader the flavor of the derivation of
the analytic solution. For example, the generalization to
tubes is more fully developed as well as the distinctions
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among linear, triangular and square truncations used in
the development.

The analysis begins by considering a quarter cylinder in a
square box as shown in Fig. Al. The temperature solution
in the fill and rod regions are assumed to be of the form:

> B
Ta= Y, <A,,r” + —:) cos (nf) (AD)
n=1,3,5... r
and
Twa= Y, C,rcos(nf). (A2)

n=1.3,5,...

The origins of these expansions do not appear obvious, how-
ever, they are noted to satisfy the boundary conditions. In
particular, the assumed temperature profiles satisfy the left
(isothermal) boundary condition of :

T(r,H - g) =0 (A3)
and the bottom (insulated) boundary condition of :

oT

i =0) =0 A4

30 (r,0=0=0 (A4

The expansions are also required to satisfy the interface
boundary conditions :

Tﬁll(r =To» 0) = Trod(r = Toy 0) (AS)
and
aT, oT,,
ki (r = 10,0) = kg — > (r =70, 0). (A6)

The insertion of equations (A.1) and (A.2) into equations
(A.5) and (A.6) leads to two equations with three sets of
unknowns. The equations constrain two of the sets of vari-
ables (4’s, B’s, or C’s) in terms of one of the sets of variables.
For example, the 4’s and C’s can be expressed as functions
of the B’s:

1

n = W n (A7)
and
Co= B, (A8)
w+1)(ro)
where
kﬁll _krod
- ke tKeoa (A9)

The solutions can then be expressed as functions of the
unknown B’s:

oo n 1
Tau= Y Bn(v(:.‘ﬁ+r—,,)c08(n9) (A10)

a=13,5,..

fill

T = uniform T = uniform

rod fo

[t}

FiG. Al. Quarter cylinder considered in the derivation of the
analytic formulae.
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Tioa = i Bn(l—:_li)(—r:%cos(nﬂ). (All)

n=135,..

The B’s are calculated using the method of Rayleigh which
can be interpreted as enforcing the top (insulated) boundary
condition and the right (isothermal) boundary condition. In
addition, the values of the B’s depend on the type of array
considered. Here for example, a square array is considered. A
hexagonal array would have the same structure as equations
(A10) and (All), however the B’s would have different
values. These two boundary conditions are only approxi-
mately satisfied and the agreement improves with more terms
in the series. Rayleigh’s method yields:

By - M M_—I)!
mei3s,.. A(m—1)!

where » is odd and ranges from 1, 3, 5, ... up to N, and

SyimBn  (A12)

1 n=1
Oy = 0 otherwise’

The parameter M in equation (A12) is determined from one
of three options:

N n=1
Linear Truncation
1 n>1
M= N—n+1 Triangular Truncation
N Square Truncation

The terms linear, triangular and square are used to indicate
the shape of the set of equations generated on the right hand
side of equations (A12) through the choice of M. The linear
truncation indicates that only one term is on the right hand
side for each equation after the first. The square truncation
indicates that each equation (from first to last) has the same
number of terms on the right hand side. The triangular
truncation has decreasingly fewer terms on the right hand
side for increasing N (i.e. the number of equations). The
‘linear’ truncation was used by Rayleigh [9] and the ‘tri-
angular’ truncation has been used by Perrins et al. [6, 7],
among others. Similarly, the ‘square’ truncation has been
discussed by Perrins et al. [6]. Equation (A12) generates a
set of N equations in N unknowns which can be solved
to yield the B’s. The S’s in equation (A12) are numerical
coeflicients which can be calculated from a summation of the
form:

Sk =Y (x,+/(=Dy)* (A13)

j=1

where (x;, y;) are the locations of all of the surrounding
cylinder centers (excluding the cylinder at the origin). The
values of the S’s have been calculated for the square array:

S, = n = 3.1415926

S, = 3.1512112
Ss = 4.2557732
Sz=  3.9388490
S = 4.0156950
S = 3.9960967
Sy = 4.0009768
Sy = 3.9997559
Sy, = 4.0000610
Si = 3.9999847
Sw=  4.0000038
Sy = 3.9999990
S = 4.0000002
S = 3.9999999
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and for the hexagonal array:

Sy =- %’L = 3.6275987
V3
S, = 5.8630317
S, = 6.0096400
Sy = 5.9997184
S = 6.0000116
Sy = 5.9999996
Su = 6.0000000.

The effective conductivity can be calculated using Green’s
Theorem with the solutions for the temperature distri-
butions. This yields:
Feong = 1 —278B,. (Al4)

The procedure is to solve the equations generated by equa-
tion (A12) for B, and substitute the solution into equation
(A14). The ‘order’ of the analytic series is determined by the
choice of ‘N’ in equation (A12). In Table 1 of this paper,
the analytic solutions were generated using the ‘triangular’
truncation scheme with N = 1,2,....7 for the square array.
andwith N = 1,2,..., 11 forthe hexagonal array. The reader
is reminded that for the square array the solutions are equal
for sets of N (i.e. N = (2 or 3) generate the same solution,
N = (4 or 5) generate the same solution, N = (6 or 7)
generate the same solution). Similarly, for the hexagonal
array the solutions are the same when N = (3 or 4 or 5),
N=(6or7or8),and N=(9 or 10 or L1). These group-
ings of solutions are shown in Table | and throughout this
paper.

The generalization to tubes is considered straightforward
where three temperature distributions are assumed as shown
(compare with equations (A1) and (A2):

B,
<A,,r” + - ,';> cos (nt))
-

D
<C,,r" + 7,{'«) cos (nt)) (A16)

(AL5)

and

Toore = Z E,r"cos (nt)).

A= 1305

(A1T)

The edge boundary conditions remain the same (equations
(A3) and (A4)). The interior boundary conditions are as
shown (compare with equations (A5) and (A6)):

Tan(r = r,,0) = Tyypelr = 1. 0) (A18)
8T, T e
ko S = 1 0) = e (= 1, 0) (AL9)
cr r
Tine(r = riao) = Toper = Vn()) (A20)

and

OT e 0T e
Ko 22 (= 1.0) = Keore 2 (r = 1, 0). (A21)
or cr

The four constraints can be used to express four of the
unknown sets of variables (e.g. A’s, C’s, D’s, and Es) in
terms of one of the sets of variables (e.g. B’s). The tem-
perature fields can both be expressed in terms of only the
B’s. An equation similar to equation (A12) can be estab-
lished where the v’s are generalized to be a function of n as
shown :
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APPENDIX B: NUMERICAL CALCULATIONS

The array conduction factors were numerically calculated
using the four elemental volumes shown in Figs. Bl and B2.
One-dimensional heat transfer is assumed in the 07 and 45
directions for the square array, and in the 0~ and 30~ direc-
tions for the hexagonal array. The isothermal and adiabatic
boundary conditions are indicated in Figs. Bl and B2 of this
paper. In each elemental volume, three distinct regions arc
illustrated : core, tube and fill. The heat conduction equation
applies for each region, i.e. grad (T) = 0. The interface
between adjacent regions is assumed to be locally isothermal
(i.e. thermal contact resistance is not considered).

The clemental volumes in Figs. Bl and B2 are the most
fundamental volumes which take advantage of both the ther-
mal and geometrical symmetry. The square array is geome-
trically symmetric every 90" rotation, and a 45 rotation
introduces a distinct direction. The hexagonal array is sym-
metric every 60° rotation, and a 30" rotation introduces a
distinct direction. To simulate a solid rod, the core and tube
conductivities are set to be equal. To simulate a hollow tube,
the core and fill conductivities are set to be equal (the term
hollow tube 1s consistent with Runge {10]).

A commercially available computer program called
NEKTON [18] was used. The domains were discretized
into ‘macro’ clements as shown in Figs. Bl and B2. For
example, the horizontal volume from the square array was
discretized into seven macro clements where three were for
the core, two for the tube and two for the fill. One extra

~T,

IEEETISENRERERREN

(@

(b)

F1G. Bl. Spectral element mesh used to calculate the con-
duction factor for a square array in the (a) horizontal and
(b) 45 degree direction.
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F1G. B2. Spectral element mesh used to calculate the con-
duction factor for a hexagonal array in the (a) horizontal
and (b) 30 degree direction.

element was added as an isothermal element (conductivity
1000 times larger than the fill conductivity) for com-
putational convenience. In total, eight macro elements were
used to discretize the domain in Fig. Bl1(a). NEKTON is a
spectral element computer program which allows high-order
discretization. Both 5 x 5 and 7 x 7 polynomial tensor prod-
ucts were used in each macro element. The results were
compared for varying p/d and both were found to yield
essentially the same solution (to approximately five sig-

nificant digits in F,,,4). This comparison of $x 5 and 7x 7
results confirmed numerical convergence and a 7x 7 dis-
cretization was used for all of the results. Tables of results
are presented by Manteufel [16].

A heat flux was specified on one side of the isothermal
element which then acted as an isothermal boundary
condition. The ¢onduction factor was determined by the
discrete form of Fourier’s law :

T,~T,
" = Fonak
q cond ﬁll( L )

(BI)

where

¢" = heat flux [Wm™?

F.q = conduction factor [dimensionless]

ks = fill conductivity [W m~! °C™!]

L = length between isothermal boundaries [m]
T, = temperature [°C], and

T, = temperature [°C].

The lengths can be related to the pitch (distance from rod
center to rod center) :

ip Fig. Bl(a)

ﬁp Fig. Bl(b)

2

ip  Fig. B2(a)
3

\/7,; Fig. B2(b).

The fill conductivity, total heat flux and right side tem-
perature are specified as kg =1.0 W m~! °C~!, ¢' =
1.0 W m™2 and T, = 0.0°C. The maximum temperature,
T,, is then calculated using NEKTON. The additional high
conductivity element was used for computational con-
venience because the heat flux is not necessarily uniform
while the temperature T, is uniform along the left side edge
of the mesh. By introducing the high conductivity element,
the uniform temperature was ensured while the applied
heat flux automatically adjusted in the solution. The con-
duction factor is then calculated using:

Foo L
cond T2

where T, is calculated by the computer program.

(B2)



